行测数学秒杀实战方法(公考数学题秒杀技巧)

发布时间:2025-09-07 14:39:59
 1、请长按红色复制 考试报名提醒 ,也可以点击右侧的按钮
 2、在微信公众号搜索并关注官方公众号。
 3、回复大礼包,获得30G公务员、事业单位、教师(视频、真题、题库、教材等)资料!

牛吃草问题是行测数学运算常考,爱考的一种题型,并且在近一两年各大考试中频繁出现。刚开始同学们对这类问题很抵触,老是找不着思路,往往最后都是随便图一个选项而了之。其实这种题型可以在考场上做到秒杀。

在这里国家公务员考试网就给大家分享一下怎么在考场上做到秒杀:

我们先来看看什么叫做牛吃草问题,牛吃草问题又称为消长问题或牛顿问题,草在不断生长且生长速度固定不变,牛在不断吃草且每头牛每天吃的草量相同,供不同数量的牛吃,需要用不同的时间。我们在解决这类问题的方法是:转化为相遇或追及模型来考虑。

一、追及模型

原有草量=(牛每天吃掉的草-每天生长的草)×天数

例1:一个牧场长满青草,牛在吃草而草又在不断生长,已知牛10头,20天把草吃尽,同样一片牧场,牛15头,10天把草吃尽。如果有牛25头,几天能把草吃尽?

解析: 假设每头牛吃草速度是1份,按照公式列出:

(10-x)×20=(15-x)×10=(25-x)×t 解出 :t=5天

二、相遇模型

原有草量=(牛每天吃掉的草+其他原因每天减少的草量)×天数

例2:牧场上长满牧草,秋天来了,每天牧草都均匀枯萎,这片牧场可供10头牛吃8天草,可供15头牛吃6天。可供25头牛吃多少天?

解析:假设每头牛吃草速度是1份,按照公式列出:

(10+x)×8=(15+x)×6=(25+x)×t 解出 :t=4天

只要同学们掌握以上两种基本模型,牛吃草问题就不再是困扰你的问题,即使是一种衍生题型也是一个办法-——秒杀!

浏览过上文的人,还点击查看了本内容
 ★ 关注官方公众号,领100元 ★ 
方法一:将二维码保存到相册,微信打开扫一扫,从相册打开二维码即可领取。
二维码
方法二:在微信搜索“考试报名提醒”,关注即可领取。

 ★ 网友精彩评论 ★ 
 ★ 各地时事政治 ★ 
Top返回顶部