常用数学公式总结

发布时间:2025-09-04 14:56:22
 1、请长按红色复制 考试报名提醒 ,也可以点击右侧的按钮
 2、在微信公众号搜索并关注官方公众号。
 3、回复大礼包,获得30G公务员、事业单位、教师(视频、真题、题库、教材等)资料!

容斥原理
涉及到两个集合的容斥原理的题目相对比较简单,可以按照下面公式代入计算:
一的个数+二的个数-都含有的个数=总数-都不含有的个数
【例3】某大学某班学生总数为 32人,在第一次考试中有 26 人及格,在第二次考试中有 24
人及格,若两次考试中,都及格的有 22 人,那么两次考试都没有及格的人数是多少【国
2004B-46】
A.10 B.4 C.6 D.8
应用公式 26+24-22=32-X
X=4
所以答案选B

【例9】某单位有青年员工 85人,其中 68 人会骑自行车,62 人会游泳,既不会骑车又不会
游泳的有 12人,则既会骑车又会游泳的有多少人。【山东 2004-13】
A.57 B.73 C.130 D.69
应用公式: 68+62-X=85-12
X=57人

抽屉原理:


【例1】在一个口袋里有10个黑球,6 个白球,4 个红球,至少取出几个球才能保证其中有
白球?【北京应届2007-15】
A.14 B.15 C.17 D.1849.


采取总不利原则 10+4+1=15 这个没什么好说的


剪绳问题核心公式
一根绳连续对折N 次,从中M 刀,则被剪成了(2N×M+1)段

【例5】将一根绳子连续对折三次,然后每隔一定长度剪一刀,共剪6刀。问这样操作后,原来的绳
子被剪成了几段?【浙江2006-38】
A.18段 B.49段 C.42段 D.52段
2^3*6+1=49


方阵终极公式
假设方阵最外层一边人数为N,则
一、实心方阵人数=N×N
二、最外层人数=(N-1)×4

【例 1】某学校学生排成一个方阵,最外层的人数是 60 人,问这个方阵共有学生多少人?
【国2002A-9】【国2002B-18】
A.256人 B.250人 C.225人 D.196人
(N-1)4=60 N=16 16*16=256 所以选A


【例3】某校的学生刚好排成一个方阵,最外层的人数是 96 人,问这个学校共有学生:【浙
江2003-18】
A.600人 B.615人 C.625 人 D.640人
(N-1)4=96 N=25 N*N=625

过河问题:
来回数=[(总量-每次渡过去的)/(每次实际渡的)]*2+1
次数=[(总量-每次渡过去的)/(每次实际渡的)]+1
【例 1】有 37 名红军战士渡河,现仅有一只小船,每次只能载 5 人,需要几次才能渡完?
【广东2005上-10】
A.7次 B.8次 C.9次 D.10次
37-1/5-1 所以是9次


【例2】49名探险队员过一条小河,只有一条可乘 7人的橡皮船,过一次河需3 分钟。全体
队员渡到河对岸需要多少分钟?( )【北京应届 2006-24】
A.54 B.48 C.45 D.39
【(49-7)/6】2+1=15 15*3=45


【例4】有一只青蛙掉入一口深10 米的井中。每天白天这只青蛙跳上 4 米晚上又滑下 3 米,
则这只青蛙经过多少天可以从井中跳出?
A.7 B.8 C.9 D.10
【(10-4)/1】+1=7

核心提示
三角形内角和180° N 边形内角和为(N-2)180

【例1】三角形的内角和为180度,问六边形的内角和是多少度?【国家
2002B-12】
A.720度 B.600度 C.480度 D.360度
(6-2)180=720°
盈亏问题:
(1)一次盈,一次亏:(盈+亏)÷(两次每人分配数的差)=人数
(2)两次都有盈: (大盈-小盈)÷(两次每人分配数的差)=人数
(3)两次都是亏: (大亏-小亏)÷(两次每人分配数的差)=人数
(4)一次亏,一次刚好:亏÷(两次每人分配数的差)=人数
(5)一次盈,一次刚好:盈÷(两次每人分配数的差)=人数


例:“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2=8(个)………………人数
10×8-9=80-9=71(个)………………桃子


还有那个排方阵,一排加三个人,剩29人的题,也可用盈亏公式解答。

行程问题模块

平均速度问题 V=2V1V2/V1+V2
【例 1】有一货车分别以时速 40km 和 60km往返于两个城市,往返这两个城市一次的平均
时速为多少?【国家1999-39】
A.55km B.50km C.48km D.45km
2*40*60/100=48
【例 2】一辆汽车从 A 地到 B 地的速度为每小时 30 千米,返回时速度为每小时 20 千米,
则它的平均速度为多少千米/时?【浙江 2003-20】
A.24千米/时 B.24.5千米/时 C.25千米/时 D.25.5 千米/时
2*30*20/30+20=24

比例行程问题
路程=速度×时间( 1 2 1 2 12 S vt = 或 或 或 )路程比=速度比×时间比,S1/S2=V1/V2=T1/T2
运动时间相等,运动距离正比与运动速度
运动速度相等,运动距离正比与运动时间
运动距离相等,运动速度反比与运动时间
【例2】 A、B两站之间有一条铁路,甲、乙两列火车分别停在A站和B站,甲火车4分钟走的路
程等于乙火车5分钟走的路程,乙火车上午8时整从B站开往A站,开出一段时间后,甲火车从A站出发
开往B站,上午9时整两列火车相遇,相遇地点离A、B两站的距离比是15∶16,那么,甲火车在什么时
刻从A站出发开往B站。【国2007-53】
A.8时12分 B.8时15分 C.8时24分 D.8时30分
速度比是4:5
路程比是15:16
15S:16S
5V : 4V 所以T1:T2=3:4 也就是45分钟 60-45=15 所以答案是B


在相遇追及问题中:
凡有益于相对运动的用“加” ,速度取“和” ,包括相遇、背离等问题。
凡阻碍 相对运动的用“减” ,速度取“差” ,包括追及等问题。

从队尾到对头的时间=队伍长度/速度差
从对头到队尾的时间=队伍长度/速度和

【例 2】红星小学组织学生排成队步行去郊游,每分钟步行 60 米,队尾的王老师以每分钟
步行 150 米的速度赶到排头,然后立即返回队尾,共用 10 分钟。求队伍的长度?( )
【北京社招2005-20】
A.630米 B.750米 C.900米 D.1500米
X/90+X/210=10 X=630

某铁路桥长 1000 米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用
120 秒,整列火车完全在桥上的时间80秒,则火车速度是?【北京社招 2007-21】
A.10米/秒 B.10.7米/秒 C.12.5 米/秒 D.500米/分
核心提示
列车完全在桥上的时间=(桥长-车长)/列车速度
列车从开始上桥到完全下桥所用的时间=(桥长+车长)/列车速度
1000+X=120V
1000-X=80V
解得 10米/秒


为节约用水,某市决定用水收费实行超额超收,标准用水量以内每吨2.5元,超过标准的部分加倍收费。某用户某月用水15吨,交水费62.5元,若该用户下个月用水12吨,则应交水费多少钱?

15顿和12顿都是超额的,所以62.5-(3X5)

[例1]某团体从甲地到乙地,甲、乙两地相距 100千米,团体中一部分人乘车先行,余下的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那部分人,已经步行速度为8千米/小时,汽车速度为40千米/小时。问使团体全部成员同时到达乙地需要多少时间?

A.5.5小时 B.5小时 C.4.5小时 D.4小时


假设有m个人(或者m组人),速度v1,一个车,速度v2。
车只能坐一个/组人,来回接人,最短时间内同时到达终点。总距离为S。

T=(S/v2)*[(2m-1)v2+v1]/[v2+(2m-1)v1]

浏览过上文的人,还点击查看了本内容
 ★ 关注官方公众号,领100元 ★ 
方法一:将二维码保存到相册,微信打开扫一扫,从相册打开二维码即可领取。
二维码
方法二:在微信搜索“考试报名提醒”,关注即可领取。

 ★ 网友精彩评论 ★ 
 ★ 各地行测天天练 ★ 
Top返回顶部